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Abstract. Using Kramer’s formulation of static cylindrically symmetric perfect fluid solutions,
we propose a fairly general integration procedure which yields existing solutions as special
cases. Foremost, we reduce the problem of finding the cylindrically symmetric analogue of the
Schwarzchild interior solution to that of solving a nonlinear second-order ordinary differential
equation for the generating function. Although we cannot solve this equation exactly, we provide
an asymptotic analysis of its solution under the assumption that the pressure is very small within
the source.

1. Introduction

Vacuum solutions with cylindrical symmetries abound in the literature. But realistic sources
producing them are scarce. Over the years, many authors have proposed various formulations
of the cylindrically symmetric Einstein field equations that simplify the search of sources.
Amongst these formulations, those of Evans [1], Kramer [2] and Philbin [3] are particularly
remarkable thanks to their simplicity and implications (for instance, the derivation of physically
realistic sources for the Levi-Civita vacuum solution). In Evans’ scheme, one must choose
an appropriate generating function and then solve a scalar linear second-order ODE. For its
part, Philbin reduced the field equation to a scalar linear first-order ODE that can be solved
for a convenient generating function. Using a nonlocal change of variables, Kramer mapped
the field equations to a pair of coupled first-order nonlinear ODEs which can be uncoupled to
yield a single nonlinear second-order ODE [5]. We shall adopt this last approach in this paper.

It should be noted that Haggag and Desokey [4] and Haggag [5] also used Kramer’s
equations in the derivation of their solutions. They assumed an ansatz for the solutions of
Kramer’s equations.

Here, we shall provide a broader setting for the solution to Kramer’s equations. As a result,
existing solutions become particular cases of our solution. Further, we propose a solution to
the problem of finding a cylindical source with constant density.

2. Field equations: Kramer’s formulation

The static cylindrically symmetric metric may be written in Weyl’s form as

ds2 = e2u dt2 − e2k−2u(dρ2 + dξ 2) − w2e−2u dφ2 (1)
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where the metric functions depend on ρ only and the axis of symmetry is given by ρ = 0. For
a perfect fluid, the energy momentum tensor is provided by

T ab = (µ + p)UaUb − pgab (2)

whereµ andp are, respectively, the fluid density and pressure andUa is the four-velocity of the
matter in a comoving frame. The Einstein field equations for a static cylindrically symmetric
perfect fluid distribution is then [6]

w′′ = 2κ0wpe2k−2u (3)

w′′ − 2w′k′ + 2wu′2 = 0 (4)

k′′ + u′2 = κ0pe2k−2u (5)

u′′ +
u′w′

w
= 1

2
κ0(µ + 3p)e2k−2u (6)

where a prime denotes differentiation with respect to ρ and κ0 is the Einstein constant. The
equation T a

b;a = 0 implies that

dp

du
+ p + µ = 0. (7)

Note that (6) is a consequence of (3)–(5) and (7). Treating u as the new radial coordinate and
making the change [2]

y = dk

du
z = 1

w

dw

du
(8)

the field equations become [2]

ẏ = (1 − yz)(Fy − 2) ż = (1 − yz)(Fz − 2) (9)

where the overdot indicates differentiation with respect to u and

F = µ + 3p

2p
. (10)

Interchanging y and z in (9) leaves the equation unchanged. Hence y ↔ z is a discrete
symmetry of (9). For a given equation of state µ = µ(p), the pressure p = p(u) is found
by solving (7). From (10) it then follows that F = F(u). Once a solution to (9) is known,
equations (8) yield the remaining unknowns of the metric. Indeed if u is taken as the new
radial coordinate, the metric reads [2, 5]

ds2 = e2u dt2 − yz − 1

κ0p
du2 − e2k−2u dξ 2 − w2e−2u dφ2. (11)

The energy condition µ � p will be satisfied if F � 2 (use (10)). Further, the elementary
flatness at the axis which can be taken to be u = 0 modulo a translation, implies y → y0 =
const �= 0, z → ∞ and F → 2/y0 as u → 0 [5].

Note that the metric (11) has an apparent singularity at the axis u = 0 which can be
romoved by the transformation u → r2 [5]. If the pressure vanishes for u = ub, we must have
yz → 1 as u → ub in order to get rid of the singularity at the boundary u = ub [5].

3. Solutions to Kramer’s equations

The system (9) can be uncoupled to give [5]

(2 − FY)Y Ÿ = (2 − 3FY)Ẏ 2 + [4 − 6FY + (4 + 2F 2 − Ḟ )Y 2 − FY 3]Ẏ (12)
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where Y ∈ {y, z}. Now assume that F = F(Y ) �= 2/Y (F = 2/Y leads to Kramer’s
solutions [2]). Then

Ḟ = F ′Ẏ (13)

where this time the prime stands for differentiation with respect to Y . Using (13) in (12) yields

(2 − FY)Y Ÿ = (2 − 3FY − F ′Y 2)Ẏ 2 + [4 − 6FY + (4 + 2F 2)Y 2 − 2FY 3]Ẏ . (14)

Note that equation (14) is invariant under the translation of u. Hence the assumption made
introduces a symmetry. This symmetry hints to the change of variable Z = Ẏ . In the new
variable, equation (14) reads

dZ

dY
+
F ′Y 2 + 3FY − 2

Y (FY − 2)
Z = 2FY 3 − (4 + 2F 2)Y 2 + 6FY − 4

Y (FY − 2)
. (15)

Equation (15) is a linear first-order ODE which is easily integrated. The solution to (14) is∫
dY

eI (Y )
∫
J (Y )e−I (Y ) dY + C1eI (Y )

= u + C2 (16)

where

I (Y ) =
∫

F ′Y 2 + 3FY − 2

Y (FY − 2)
dY (17)

J (Y ) = 2FY 3 − (4 + 2F 2)Y 2 + 6FY − 4

Y (FY − 2)
. (18)

To the best of our knowledge, the general solution to Kramer’s equations (16) is new and has
not appeared in the literature before.

4. Some closed-form solutions

Here, we explore some solutions expressible in terms of elementary functions. We also show
that existing solution can be derived from (16) as well.

4.1. Haggag’s solutions

Haggag [5] obtained solutions of (9) by making the ansatz

z = dy2 + cy − b

y − a
. (19)

It is then straightforward to see that his solutions correspond to the choice

Y = y F = 2
(1 − d)y2 + 2a(d − 1)y + a2 + ac − b

(ad + c)y2 − 2by + ab
(20)

in our formulation.

4.2. Philbin’s solutions

They correspond to the relation [5]

18(3 − 2z2)(y − z)2 + s(y − z)(225y − 300z−100yz2 + 224z3) − 5s2(5 + 5yz − 8z2)2 = 0

(21)

where s is a constant. Equation (21) can be solved explicitly to obtain y = f (z). Indeed (21)
is a quadratic equation for y. Then equation (9) implies that F = F(z). Whence Philbin’s
solutions are also derivable from (16).
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4.3. New solutions

To obtain solutions in terms of elementary functions, F must be chosen so that it is possible
to evaluate the integrals appearing in (16).

If we assume that I (Y ) = 0 in (16) then we easily find that the F that realizes this is

F = 1

Y
+

K

Y 3
(22)

where K is an arbitrary constant. We assume that K �= 0 since K = 0 leads to Haggag’s
solution. If we further set Y = y, (16) becomes∫

y2

y4 + C1y2 + K
dy = u + C2. (23)

From (9), we infer that

z = 1

y
+
y4 + C1y + K

y(y2 − K)
. (24)

From the expression for z, we see that K must be positive to allow the existence of an axis
(cf section 2). Then the axis is given by y = ±√

K provided K ± C1K
−1/2 + 1 �= 0. Indeed

we must have limy→±√
Kz = ∞. We choose y = √

K as the axis. The other choice can be
treated likewise.

Using (10), we find that

µ = −3y3 + 2y2 + 2K

y3
p. (25)

By substituting (25) into (7), we get

p = p0 exp

[
2
∫

y3 − y2 − K

y(y4 + C1y2 + K)
dy

]
. (26)

For convenience, it is preferable to rewrite (11) as

ds2 = e2u(y) dt2 − yz − 1

κ0p

dy2

ẏ2
− e2k(y)−2u(y) dξ 2 − w2(y)e−2u(y) dφ2

namely

ds2 = e2u(y) dt2 − y4

κ0p(y2 − K)(y4 + C1y2 + K)
dy2 − e2k(y)−2u(y) dξ 2 − w2(y)e−2u(y) dφ2.

(27)

To complete the description of the solution, we need to evaluate the integral occuring in (23).
Let # = C2

1 − 4K . Denote the roots of the quadratic λ2 + C1λ + K = 0 by λ1 and λ2. The
only case allowing the existence of a surface of vanishing pressure is the following:

λ1 = a2, λ2 = b2, a > 0, b > 0:(
y − a

y + a

) a

2(a2−b2)
(
y − b

y + b

) b

2(b2−a2) = C2eu (28)

where C2 is an arbitrary constant of integration and

ek = k0

(
y − a

y + a

) a2

2(a2−b2)
(
y − b

y + b

) b2

2(b2−a2)

(29)

w = w0

(
y − a

y + a

) 1
2(a2−b2)

(
y − b

y + b

) 1
2(b2−a2)

(y2 − K)−1/2 (30)

p = p0y
−2(y − a)

a3−a2−K

a2(a2−b2) (y + a)
a3+a2+K
a2(b2−a2) (y − b)

b3−b2−K

b2(b2−a2) (y + b)
b3+b2+K
b2(a2−b2) (31)

where k0, w0 and p0 are constants.
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4.4. Matching to the Levi-Civita metric

Now we consider the problem of matching the solutions obtained in the previous section to
the vacuum solution. The exterior Levi-Civita metric may be written as [4]

ds2 = eu dt2 − n2(1 − m)2

m2
e2(m−1+1/m)u du2 − e2(1−m)u dξ 2 − e2(1/m−1)u dφ (32)

where σ = m/2 is the mass per unit length in the Newtonian limit and n is a constant. The
constants m and n are related to the internal structure of the source.

A metric is matchable to the exterior vacuum one if there is a surface of vanishing pressure
(boundary), the metric coefficient as well as their first derivatives are continuous at the boundary
and the quantity Gi

jf,i are continuous at the boundary, where Gi
j is the Einstein tensor and

f = 0 is the equation of the boundary [7, 8]. Note that the continuity of the radial derivative
of the radial component of the metric (i.e. guu,u) is not necessary: it is well known that in
the interior and exterior Schwarzschild metrics, the derivative of the radial coefficient is not
continuous at the boundary.

Since for our solutions the pressure and the density vanish at the boundary, the junction
condition Gi

jf,i = 0 at the boundary is automatically satisfied.
For the Levi-Civita metric (32) we have y = m. Hence for our solutions, the boundary

is necessarily given by y = yb = m. Thus, we choose a = m. Hence b = √
K/m. There

is a unique boundary provided
√
K < a = m < b = √

K/m. This last condition prevents
singularities occurring within the source. The regularity at the axis y = √

K leads to

C2 =
(√

K − m√
K + m

) m

2(m2−K2/m2)
(√

K − √
K/m√

K +
√
K/m

) √
K

2m(K2/m2−m2)

. (33)

Since the y coordinate is singular beyond the boundary (y = m), we cannot express the Levi-
Civita metric in the (t, y, ξ, φ) coordinates. This prevents us from studying the continuity of
the metric coefficients as well as their first-order derivatives at the boundary. Hence we could
not relate the coefficients k0, w0 and p0 to m and n. This is one of the drawbacks of Kramer’s
formulation.

5. Cylinder with a constant energy density

If the energy density of the cylindrical distribution is constant, i.e. µ = µ0 = const, we deduce
from (10) that

p = µ0

2F − 3
. (34)

Substituting (34) into (7) and using (16) with Y = y we obtain

(1 − F)(2F − 3)F ′′ +

[
4F − 5 − (2y3 − 5y2 + 6y)F − y2 − 4

y(Fy − 2)

]
F ′2

− (2F − 3)(F − 1)(3yF − 2)

y(Fy − 2)
F ′ = 0. (35)

For the energy condition to be valid, we require that F � 2. Hence the trivial solutions of (35)
F = 1 and 3

2 bear no physical significance. Moreover if y = yb describes the surface of
vanishing pressure, we must have [5]

lim
y→yb

F = ∞.



6822 C W Soh and F M Mahomed

Also, if the axis is y = y0, we must have [5]

lim
y→y0

F = 2/y0.

We could not solve (35) subject to the above constraints. Nevertheless, if we assume that F is
very large, that is the pressure is very small within the source, (35) simplifies to

F ′′ − 2

F
F ′2 +

3

y
F ′ = 0. (36)

Hence

F ∼ 4

y4 − 4C1y + 4C2
(37)

with

C1 = y4
b − y4

0 + 2y0

4(yb − y0)
C2 = y0y

4
b − yby

4
0 + 2y0yb

4(yb − y0)
.

Simple calculations show that

p ∼ µ0
y4 − 4C1y + 4C2

8 − 12C2 + 12C1y − 3y4
(38)

ẏ ∼ 2(C3 − y4)

y3(y4 − 4C1y + 4C2)
(39)

where C3 is an arbitrary constant. In the calculations below, we assume that C3 > 0. The case
C3 < 0 can be treated similarly. By integrating (39) we find

u ∼ C1y − y4

8
− C1C

1/4
3 arctan(C−1/4

3 y) +
C1C

1/4
3

2
ln(C1/2

3 − y2)

− 1
8 (4C2 + C3) ln(y4 − C3) − C4 (40)

where

C4 = C1y0 − y4
0

8
− C1C

1/4
3 arctan(C−1/4

3 y0)

+
C1C

1/4
3

2
ln(C1/2

3 − y2
0 ) − 1

8
(4C2 + C3) ln(y4

0 − C3)

2(k − k0) ∼ −(4C2 + C3)y + 2C1y
2 − y5

5
+

1

2
C

1/4
3 (4C2 + C3) arctan(C−1/4

3 y)

+ 1
4 (−4C2C

1/4
3 + 4C1C

1/2
3 − C

5/4
3 ) ln(C1/2

3 − y2) − C1C
1/2
3 ln(y2 + C

1/2
3 ) (41)

where k0 is an arbitrary constant and

ln

(
w

w0

)
∼ −y2

3
+

4C2 + C3

4C1/4
ln

(
C

1/4
3 + y

C
1/4
3 − y

)
+ C1 ln(y4 − C3) − 4C2 + C3

4C1/4
3

arctan(C−1/4
1 y)

+
∫

y2(y4 − 4C1y + 4C2)

(C3 − y4)(y4 − (4C1 + 2)y + 4C2)
dy (42)

where w0 is an arbitrary constant. The integral in (42) can be evaluated. But its expression
depends on the roots of λ4 − (4C1 + 2)λ + 4C2 = 0.
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6. Conclusion

In this paper we have suggested a new approach to the integration of Kramer’s equations. As
a result, we have reobtained known solutions as well as new ones. We briefly discuss their
matching to the Levi-Civita metric. In addition we propose a solution to the longstanding
problem of finding static cylindrically symmetric perfect fluid source with constant energy
density. For this problem, we provide an asymptotic solution under the assumption that the
pressure is weak within the source.
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